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The Trustable Recognition of Undesired Threats in Hardware 
(TRUTH) Analysis Tool – An Approach to Hardware Threat 

Modeling 
 
D.1 Introduction 

The impact of software viruses has been felt by the entire computerized world, 
through loss of productivity, loss of system resources or data, or mere inconvenience on a 
massive scale. Hardware, especially integrated circuits (ICs), was considered safe and 
attack-free, in contrast to its software counterpart. However, as technologies advance and 
markets expand, hardware is becoming vulnerable like software. Malicious logic, similar 
to a software virus, could be inserted into a circuit like a Trojan horse, such that it lies 
dormant and is very difficult to detect until activated, but then cannot be effectively 
defeated.  These days most complex digital systems are not designed from scratch; 
instead they use many Third Party Intellectual Property (IP) blocks. Hence, one or more 
Third Party IP blocks could contain malicious logic that may affect the entire system. The 
inserted malicious logic can lead to various unwanted scenarios that threaten the three 
key aspects of information security: Availability (Denial-of-Service), Confidentiality 
(Information Leakage), and Integrity (Data Tampering). These hardware threats must be 
identified and the corresponding attacks must be mitigated to ensure that the IC is 
trustable, i.e., only performs functions defined in the original circuit specification (no 
more and no less), before applications employing these chips are placed into operation. 
Note that the aims of malicious logic attackers are beyond profit-seeking; they also 
include issues that may affect national security. 

D.1.1 Approach 
Threat modeling is a method of assessing and documenting the security risks 

associated with an application. A fundamental component of any formal analysis of 
security properties, including those for hardware, is to construct an appropriate threat 
model for the environment in which the system is designed to be working. It is essential 
to ensure the threat model is neither too weak nor too strong: if too weak, the system may 
pass the check but may not be safe in field operation; if too strong, unnecessary design 
constraints may be posed to the designers. 

The key to effective threat modeling is to efficiently and systematically check for 
inserted malicious logic in an IC.  Once an effective method has been implemented, one 
can proceed in developing a more trustable IC.  The malicious-logic checking 
mechanisms needed for such a method can be classified into two categories: attacker-
centric and defender-centric.  For this project, the Trustable Recognition of Undesired 
Threats in Hardware (TRUTH) Analysis Tool utilized attacker-centric checking 
mechanisms in its approach towards threat modeling. 

Software-based attacker-centric checking mechanisms are separate from the 
design effort, and search the entire circuit structure after the design is complete.  
Therefore, no additional circuitry is added to the original design.  The attacker-centric 
checking mechanism used in the TRUTH Analysis Tool is a variation of the mechanism 
known as Structural Checking [1].  Structural Checking focuses on circuit structure as 
opposed to functionality – it searches the IC circuit structure for potential malicious logic 



after the design is complete. It is most effective for the following types of malicious 
logic:  

• Malicious logic targeting signals having multiple sources and destinations – these 
signals are also called “traceable” signals, whose sources and destinations can be 
easily traced by inspecting the IC’s bi-directional linked-list. Examples of such 
signals include clock tree, busses, RESET signal, interrupt signal, primary inputs 
and outputs; 

• Malicious logic targeting combinational circuits with a reasonable number of I/O 
ports – the malicious logic inside a combinational circuit is activated by the 
circuit inputs and propagates its effect to the outputs. Therefore, Structural 
Checking can either start from the output lines and “trace back” into the circuit to 
check the circuit blocks controlling these outputs, or from the input lines to search 
for the circuit blocks being controlled by these inputs. To reduce complexity, the 
number of circuit inputs/outputs cannot be too many; 

• Malicious logic targeting small combinational circuits – for small combinational 
circuits, even if they have many input/output ports, Structural Checking is still 
applicable since the total circuit complexity is low.  

The TRUTH Analysis Tool utilizes the Structural Checking attacker-centric 
checking mechanism in its approach to threat modeling.  An in-depth analysis of how the 
Tool uses this checking mechanism is presented in the sections that follow.  

The Structural Checking approach is applicable to all levels of abstraction, from 
RTL description to physical layout. However, application to transistor-level or physical-
level netlists is more difficult than RTL or gate-level netlists, because of greater difficulty 
in identifying logic constructs at these lower levels of abstraction.  For this reason, the 
TRUTH Analysis Tool performs threat modeling only at the RTL level. 

D.2 Functionality 
D.2.1 Overview 

The objective of the TRUTH Analysis Tool is to perform threat modeling on an 
IC design accurately and efficiently at the RTL level of abstraction.  Given the design 
layout and information provided by the user, the Tool analyzes the circuit design for 
likely attacks.  It then provides a list of these attacks to the user to allow for further 
inspection of the locations in the circuit where the attacks occur.  When in the process of 
analyzing a circuit for attacks (so-named “risk analysis”), there is a tradeoff between the 
thoroughness of the analysis and the resources needed to conduct such an analysis.  A 
more thorough analysis can only be conducted at the expense of computation time and 
resources.  For this reason, the Tool attempts to optimize the tradeoff and maximize the 
effectiveness of the resources used. 

D.2.2 Tool Structure 
The TRUTH Analysis Tool takes a step-by-step approach to performing threat 

modeling on an IC.  Throughout each step, the Tool acquires the attributes necessary to 
effectively analyze the IC for possible attacks. 

The Threat Model, denoted as M, of a target IC, can be defined as 
.  S is the internal circuit structure of the target IC, and P represents },,,,,{ KTACPSM =
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D.2.3 Creating the Circuit Structure 
As stated, the TRUTH Analysis Tool accounts for circuits represented by an RTL 

description, which is the most abstract level of design.  This type of description is written 
in VHDL (VHSIC Hardware Description Language). The VHDL parser written by Dr. 
Christoph Grim, et. al., provides a framework that translates the IEEE 1076 standard 
(Design Automation Standards Committee of the IEEE Computer Society) into Java code 
[2]. Using object-oriented programming in Java, the parser has been highly modified in 
order to build the internal circuit structure S needed for threat modeling.  Upon reading in 
a VHDL file, the parser creates a representation of the file in memory.  It then recognizes 
specific attributes about the file that allows certain automated operations necessary for 
risk analysis to be performed. These operations include tracing data paths, recognizing 
functional blocks and memory elements, and determining points at which signals are 
modified. 

The attributes recognized by the parser are shown in Figure 2 and are the following: 

• Signals - the term “signal”, in this context, represents a connection between two 
or more digital components. Each signal is either a port signal or an intra-signal. 
Port signals (also known as I/O signals) connect from outside the circuit to one or 
more of the circuit's subcomponents. Each port signal has a “mode” characteristic 
that represents how data flows through that signal (e.g., IN, OUT, etc.). Intra-
signals, on the other hand, represent the circuit's internal wires connecting two or 
more subcomponents together. All intra-signals have a “mode” characteristic of 
SIGNAL, meaning their data flow does not have a defined direction. 

• Process blocks – a process block is a logic block typically used to build sequential 
circuits.  These circuits act only when certain signals change their value, which 
are listed in the process block's sensitivity list. The parser treats a process block as 
a subcomponent where signals accessed by that process (in the sensitivity list or 
inside the block) are connections to the rest of the circuit. In other words, the 
parser determines which of the circuit's port and intra-signals are accessed from a 
process block and then generates a list of those signals for that process block.  
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Figure 2: Attributes of a circuit recognized by the VHDL parser. 

• Concurrent assignments – concurrent assignments are logical operations 
performed simultaneously and continuously inside a circuit as opposed to 
sequentially. These assignments are defined inside the circuit’s architecture and 
outside process blocks. The parser represents each concurrent assignment as a 
sequence of signals, operations, and literals (e.g., ‘1’, “000”, X”ABCD0123”, 
etc.) verbatim as it appears in the statement.  

• Subcomponents (Instances) – when a VHDL file is parsed, its subcomponents are 
instantiated as instances and the VHDL files corresponding to those instances are 
placed into a queue to be parsed next.  This is necessary in order for the circuit 
structure S to properly represent the actual circuit design. 

Most circuit designs are implemented in a hierarchy of sub-circuit designs, each 
of which is coded in a separate VHDL file. In order to preserve this hierarchy, a depth 
first approach is used to create a logical representation of the design in memory.  To 
begin creating the circuit structure, the top-level design file is read in by the parser.   
As the file is being parsed, its subcomponents are instantiated as instances and the VHDL 
files corresponding to those instances are then parsed.  This recursion continues until the 
parser reaches a file that has no subcomponents.  After each file of the design has been 



parsed, connections between each file (signals) are organized so that data paths can be 
followed.  The structure mirrors that of the actual VHDL hierarchy representation used to 
create the circuit design. 

D.2.4 Specifying the Application 
ICs can have multiple intended applications at the same time, ranging from 

aircraft control to data encryption.  For each application of an IC, an attacker’s goals are 
likely to change.  Therefore, when identifying threats, one needs to ask: what is the 
primary use of this IC?  The Tool provides a list of applications separated into categories 
to choose from.  The user is to select the application that best describes the primary use of 
the target IC.  Included in each application is its own set of “threat levels”.  Since the ease 
and severity of accomplishing the three types of threats (Denial-of-Service, Information 
Leakage, and Data Tampering) is dependent on the nature of the application, certain 
threats are easier to implement and cause more damage in some applications compared to 
others.  For this reason, each application is given a rating (threat level) for each threat.  
The rating ranges from 0 to 10, with 10 being the most severe, and combines the 
likelihood of implementing the threat with the severity it would cause into an integer 
value.  For example, an IC associated with handling the results of a voting machine 
would have a very high Data Tampering threat level due to the repercussions that would 
ensue if the machine were successfully compromised.  The threat levels from the chosen 
application are then taken into account when conducting risk analysis.  

D.2.5 Determining Third Party IP blocks 
Most complex ICs today are not developed solely by the user.  Instead, most ICs 

include 3rd party Intellectual Property (IP) blocks in their implementation. Since these IP 
blocks did not originate from the user, one or more could contain malicious logic that 
may affect the entire system.  Therefore, it is important to distinguish between blocks in 
the circuit design that are trustable as opposed to those that are not trustable. 

The TRUTH Analysis Tool requires this specification.  Upon selecting an 
appropriate application for the IC, the Tool requires the user to specify any and all Third 
party IP blocks included in the design.  Since the Tool performs threat modeling on ICs at 
the RTL level written in VHDL only, it considers “Third Party IP blocks” to be any 
VHDL files of the design not developed by the user nor any other party completely 
trusted by the user.  In other words, a Third Party IP block is any file originating from 
individuals not directly affiliated with the user or company for which the TRUTH 
Analysis Tool is performing threat modeling.  This is because the likelihood of malicious 
logic contained in one of the VHDL files, however great it may be, is still a realistic 
possibility and should be handled as such.  In addition, VHDL files originating from the 
user or a trusted party are considered completely trustable with no possibility that 
malicious logic is contained in the files.  These files are not taken into account when 
performing risk analysis.  Therefore, specifying which files are Third Party IP blocks 
allows the Tool to refine its scope to a more specific range of IC components when 
performing threat modeling. 

Similar to the concept of having different “threat levels” for different applications, 
the task of specifying Third Party IP blocks allows for variations to occur.  How trustable 
a Third Party IP block is varies for each block.  Some blocks are (and should be) 
considered more trustable than others.  For this reason, each Third Party IP block has a 



“trustability weight” associated with it.  This weight is determined by the user and is 
aimed towards providing a more accurate description of the tagged Third Party IP block.  
The weight ranges from 0 to 10, with 0 being completely trustable (all VHDL files not 
marked as Third Party are automatically given a weight of 0).  The determined 
trustability weight is then taken into account when performing risk analysis.  For this 
reason, it is important to remain consistent throughout the process of assigning weights to 
Third Party IP blocks.  Some suggested questions to help maintain consistency when 
assigning trustability weights are as follows: 

• What is the reputation of the company from which this VHDL file originated? 

• Has there been a history between the user and this company in the past? 

• If so, was their work sufficient? 

• Have any other companies had privacy issues occur when conducting business 
with this company? 

It is important to note that these questions are only suggestions to aid the user.  
They are aimed towards promoting consistency throughout the process of assigning 
trustability weights to Third Party IP blocks.  Given an actual situation, one should 
develop a unique set of guidelines that is relevant to the target IC and its intended use. 

D.2.6 Specifying Assets 
The process of assigning assets aims to answer the question “why would an 

attacker attack this IC?”  This is critical because the ultimate purpose of threat modeling 
is to prevent attackers from fulfilling their goals.  In order to achieve this, the attackers’ 
goals must be understood.  An asset is an abstract or concrete resource that a system must 
protect from misuse by an adversary [3].  It is impossible to have a threat without a 
corresponding asset(s) because assets are essentially threat targets.  They are used to 
describe circuit components based on the components’ contribution to the overall 
functionality of the IC.  For this reason, components are usually assigned multiple assets 
in order to fully describe their use and contribution. 

The TRUTH Analysis Tool relies highly upon user interaction throughout the 
process of assigning assets.  This process is by far the most time consuming and difficult 
to comprehend due to its counterintuitive nature, but is vital to the effectiveness of the 
Analysis Tool. An inconsistent or inaccurate set of assets leads to an improper set of 
attacks to be determined during risk analysis which ultimately renders the Tool as 
ineffective.  The requirements for assigning assets are rather extensive and are discussed 
in detail in the sections that follow.  However, it is important to keep in mind that the 
process of selecting assets provides necessary information and is essentially the backbone 
of the TRUTH Analysis Tool.   

D.2.6.1 Asset Descriptions 
As stated, assets are used to describe circuit components based on the 

component’s contribution to the overall functionality of the IC.  In other words, assets are 
the means an attacker can use to achieve one of the three possible threats: denial-of-
service, data tampering, or information leakage.  Naturally then, there are several 
different kinds of assets needed to fully describe a circuit’s components.  Shown below 
are all the possible assets the user can choose from when describing a component’s 



contribution.   

• Control – category of assets related to the control and operation of the circuit  
o DataSensitive – affecting the control of data flow throughout the circuit 

(ex. the system bus) 
o OperationSensitive – affecting the overall operation of the circuit (ex. 

enable signals)  
o TimeSensitive – describes components that affect the timing of a circuit 

(ex. clock signals)  
• Data – category of assets related to the transfer and manipulation of data  

o Memory – affecting memory data transfer and storage (ex. general 
registers) 

o Computational – affecting data generation and interpretation (ex. ALU, 
Data Mux)  

o Critical – affecting important data crucial to the circuit (ex. passwords, 
encryption keys, etc.)  

• LogicBlock – category of assets only available for concurrent assignments, 
instances, and processes. This category is based more on a component’s structure 
and origin as opposed to its use. It is defined as any circuitry containing logical 
gates.  

o FSM – logic block behaving like a finite state machine  
o Combinational – category of logic blocks that operate concurrently  

 ALU – combinational logic block behaving like an ALU 
 DECODER – combinational logic block behaving like a decoder 
 ENCODER – combinational logic block behaving like an encoder 

o Memory – logic block behaving like a memory component  
o Other – logic block that is not represented by any other asset in the 

"LogicBlock" category  
o ThirdPartyIP – logic block that was not developed by the user (i.e., it 

came from a Third Party vendor)  
o Tristate – logic block behaving like a tri-state buffer 
o Sequential – logic block operating sequentially (i.e., process blocks)  

It is important to note that the categories of assets are also shown.  However, 
these categories serve only for organizational purposes and are not among the options the 
user can select from. 

D.2.6.2 Asset Specification Requirements 
The process of assigning assets is completely dependent on the set of Third Party 

IP blocks, C, which was explained in a previous section.  The contents of C determine 
which components of a circuit need to have assets assigned.  For this reason, the TRUTH 
Analysis Tool requires the set C to be fully developed prior to assigning assets.  Each 
VHDL file included in C resides in its own location in the circuit structure S.  Since the 
circuit structure is represented in a hierarchy-type fashion, each file in set C is located on 
a different “level” in the circuit design – the farther into the circuit hierarchy, the higher 
the level.  For example, the top-level design file is always located on level 0, and any file 
instantiated in the top-level file is located on level 1.  Therefore, since each file in set C is 
located at a specific level, the Tool is able to determine the deepest level that a VHDL 



file from set C is located.  In other words, given a set of Third Party blocks determined by 
the user, the Tool is able to find the farthest level into the circuit that one of those blocks 
is located.  It does this by simply looping through each file in set C and determining 
which file is located the farthest into the circuit.  That level is labeled as the deepest Third 
Party level throughout the remainder of the TRUTH Analysis Tool.  In the situation 
where a VHDL file is instantiated several times throughout a design, the Tool considers 
the level of the file’s farthest instantiation to be the file’s level.  Therefore, if a file is 
instantiated at level 1 as well as level 2 in a design, then the Tool considers the file’s 
level to be level 2 and will handle it as such. 

Once the deepest Third Party level has been determined, the Tool requires the 
user to specify assets for all components down to that level, but not for the level itself. 
This means that all logic blocks (processes, instances, and concurrent assignments) and 
signals located before this level need to be assigned the appropriate assets before risk 
analysis can be performed. For example, suppose the top-level VHDL file ("file_A.vhd") 
instantiates another VHDL file ("file_B.vhd") which then instantiates yet a third VHDL 
file ("file_C.vhd"). Therefore, the way the circuit structure S would appear is as follows: 

• Level 0  file_A.vhd : top-level  

• Level 1  file_B.vhd  

• Level 2  file_C.vhd  

If, when selecting Third Party IP blocks, the user determined that "file_B.vhd" 
was Third Party and no other file, then the user would only be required to specify assets 
for all components located before level 1. If, in the same example, the user determined 
that "file_C.vhd" was Third Party, then the deepest Third Party level would be level 2 
and the user would be required to specify assets for all components in level 0 as well as 
level 1.  

Furthermore, tagging assets is on an Instance-by-Instance basis. VHDL files can 
be instantiated many times throughout a design and, therefore, can represent different 
logical components of the design with each instantiation. Each of these instantiations 
could handle different types of data based on where in the design it is instantiated which 
then would require different assets for each instantiation. For example, a VHDL file 
representing a tri-state buffer could be instantiated numerous times through a design. 
Each one of those instantiations could represent a different logical component and, 
therefore, be handling different types of data. Since the data would be different with each 
instantiation, it would contain different assets. For this reason, the user is required to 
specify assets for components at every instantiation of a VHDL file as opposed to the 
VHDL file itself.  

In many situations, designs contain several Third Party IP blocks.  These files 
could be (and usually are) located on different levels of the circuit. As explained above, 
the user is required to specify assets for all components down to the deepest Third Party 
level, but not for the level itself. However, in the case that a Third Party VHDL file is 
located on a level that isn't the deepest level, the user is not required to specify assets for 
all components but rather only for the I/O signals of that file. This is because, since the 
file came from a Third Party vendor, the user did not create the file. Therefore, the user 
will not have enough knowledge about the components of the file (e.g. internal signals, 



process blocks, etc.) to accurately determine the appropriate assets for each component. 
The only components of the file the user can accurately and confidently assign assets to 
are the I/O signals of the file. For this reason, the user is only required to specify assets 
for those signals and no other component.  

D.2.6.3 Asset Filtering 
 Since most complex IC’s today are not developed solely by the user, it is likely 
the user may not know all the assets of every component in the IC.  However, assets 
provide important characteristics to each component in the circuit design and are heavily 
relied upon when performing risk analysis. Therefore, it is crucial to have a complete and 
accurate set of assets for each component of the design.   

Once the user has specified all the necessary assets for a design, a process known 
as asset filtering takes place.  This process automatically filters assets through signal 
components that are related in order to maximize the accuracy of each signal’s set of 
tagged assets.  The process, which is shown in Figure 3, filters assets in a depth first 
fashion.  It begins with the top-level design file and filters assets in two different ways: 
vertically through the design hierarchy (Instance Filtering) and laterally through signal 
connections (Concurrent Assignment Filtering). 
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Figure 3: The process of filtering assets through a VHDL design hierarchy. 

 

D.2.6.3.1 Instance Filtering 
Filtering assets through instances is highly beneficial when inconsistent sets of 

assets are tagged to signals connected via an instance. This case arises when a signal 
included in the instance declaration contains different assets than the corresponding lower 
level signal in the instance’s design file.  When this occurs, each signal’s assets are 
filtered across the instance and applied to the other design file’s corresponding signal.  
The end result, therefore, is that both signals are tagged with the same set of assets.  This 
ensures there are no inconsistencies in assets when traversing through the instances in the 
circuit. 

D.2.6.3.2 Concurrent Assignment Filtering 
Filtering assets through concurrent assignments is a way to distribute user-tagged 



assets from one signal to another. Similar to instance filtering, its goal is to maximize the 
accuracy of signal assets before performing risk analysis.  There are two types of 
concurrent assignment filtering that take place, and both operate in a bit-wise or vector-
wise fashion, depending on the type of operators inside the concurrent assignment 
statement.  If the concurrent assignment contains at least one mathematical operator, then 
the filtering will be in a vector-wise fashion. However, if it only contains logical 
operators, then the filtering will be in a bit-wise fashion, where all bits in the vector are 
independent of each other. Both types of filtering processes are explained below. 

Figure 5: Concurrent Assignment 
Filtering – driving signals to driven 

signals 

Figure 4: Concurrent 
Assignment Filtering – driven 

signals to driving signals 

• Driven signals   Driving signals  
In this filtering process, assets are transferred from signals being driven to their 
driving signal counterparts. The only time this filtering takes place is in a situation 
where a signal is being driven by itself and some other signal(s), which is shown 
in Figure 4. 

The signal clk_good, which represents the 
system clock, most likely contains an 
accurate set of assets defined by the user.  
However, if sig_A is defined internally 
within the VHDL file, the user might not 
be able to accurately define a complete set 
of assets for it.   Since sig_A directly 
affects clk_good (if sig_A is logic ‘0’, then 
the clock can essentially be shut down), it 
needs to have all assets assigned to clk_good.  Therefore, using this filtering 
process, sig_A will be assigned the assets currently assigned to clk_good, thus 
ensuring the accuracy of the signal’s assets. 

clk_good <= clk_good AND sig_A;

Assets

• Driving signals   Driven signals 
The other type of concurrent assignment filtering is the one that primarily takes 
place in concurrent assignments.  Assets from the driving signals are filtered to 
the corresponding signals of which they are driving. This type of filtering usually 
is performed in a bit-wise fashion, meaning assets of driving signals are filtered to 
the exact signal they are driving, 
and no other signal. 

 Shown in Figure 5 is an example 
where this filtering would take 
place.  Vector A represents a 4-bit 
vector being driven by two other 4-
bit vectors, B and C.  Since both B 
and C directly determine the values 
of A, their assets need to be 
assigned to A.  Therefore, when filtering takes place, all assets from B and C will 
be filtered to A.  Furthermore, since the assets are filtered in a bit-wise fashion, 
each asset from B(0) and C(0) will be filtered to only A(0), B(1) and C(1) will be 
filtered to only A(1), and so on.  This ensures no assets are incorrectly assigned to 
signals. 

A(3 DOWNTO 0) <= B(3 DOWNTO 0) OR C(3 DOWNTO 0);

Assets



D.2.7 Risk Analysis 
Risk analysis is at the center of the tool’s ability to recognize and categorize 

potentially malicious logic. Its accuracy, however, is dependent in large part on properly 
assigning assets to components of the circuit structure S.  These assignments include both 
the user-interactive assignment process as well as asset filtering. Risk analysis operates 
on one VHDL file at a time. Therefore, for a multilevel circuit, this process may occur 
many times. Using this type of method allows the process to be modular, and the depth 
and computational requirements of risk analysis can be modified for individual needs.  

There are three main components that comprise risk analysis: path trees, path 
analysis, and risk assessment. Each of these components is explained in detail in the 
sections that follow, but the general order of operations of the risk analysis process 
contains four steps.  To begin, it builds a set of path trees from the circuit structure S. 
Then, the path analyzer searches each path tree for malicious asset patterns by comparing 
them with those contained in the Threat Library. The output from the path analyzer, 
which is a list of potential threats, is then sent to the trustability calculator to perform risk 
assessment. Finally, after risk assessment, a list of potential attacks, along with 
information about the attacks, are displayed to the user.  

D.2.7.1 Threat Library 
The Threat Library contains a compilation of all known malicious asset patterns. 

This Library is designed to be expandable so that, as more knowledge accrues of how 
malicious code is implemented in hardware, the Library will be able to accept more 
precise and reliable asset patterns. This implies that the Library should be easily editable 
by the user.  At present, an automated feature for adding asset patterns is not available in 
the TRUTH Analysis Tool; however, the user has the freedom to manually update the 
Library with a new asset pattern by editing the Library’s text file, ThreatLibrary.lib. It is 
crucial to preserve alphabetical order when editing the Library file because failure to do 
so may lead to inaccurate results. 

In the Library, potential 
threats are stored as a sorted list of 
malicious asset patterns.  In 
addition, the Library contains 
information such as the type of 
attack (Denial-of-Service, Data 
Tampering, or Information Leakage) 
and a number giving the reliability 
of each asset pattern. The more 
uniquely the pattern matches an 
actual threat, the higher the reliability rating. Once the Library is ready to be used, it is 
instantiated into a tree structure, which is shown in Figure 6. Since the Library is sorted, 
converting it into a search tree is simple and efficient. First, the Library text file is read 
line by line, where each line contains a malicious asset pattern and corresponding data. 
The pattern is broken down into individual assets that are inserted into a tree structure, as 
shown in the Figure. Since the tree is sorted, it is likely that several lines will contain the 
same leftmost assets, i.e., A3 and A2. These form the root of the tree. Progressing to the 
right, the tree is traversed along the matching path of assets from the current line of the 

Figure 6: Library Asset Tree with an asset 
pattern highlighted. 



Library’s text file until the line of the text file differs from the tree. When this occurs, a 
new branch is added to the tree that stretches to the end of the line. The end result is a 
tree structure similar to the one shown in the Figure.  

Highlighted in the diagram is a potentially malicious logic pattern. Each pattern 
remains distinct within the tree through its leaf node, which in this case is asset A2. 
Therefore, there is a one-to-one correspondence between asset patterns and leaf nodes. 
Each leaf node in the parsed tree contains the asset pattern’s type and reliability number. 
Once the Library text file has been parsed it is ready to be used in path analysis. 

D.2.7.2 Path Analysis 
Path analysis is a similar process to the malicious code detection of software anti-

virus programs. It begins by manipulating the circuit structure into a searchable graph, 
called a path tree, as shown in Figure 6. Next, each path in the graph is divided into a 
linear list, called a working list, and the working list’s asset patterns are compared to 
those contained in the Threat Library. As matches are found, they are sent to a queue to 
be assessed, consolidated, and displayed.  

Building a path tree from the parsed circuit begins by identifying all primary 
inputs and outputs of each VHDL file. Once these are identified, the method begins at a 
primary output of the file, identifies all logic blocks driving the output, and recursively 
navigates to each. As the method visits each logic block, it identifies the block’s input 
signals, recursively visits them, and then visits their respective driving logic blocks. This 
recursive process continues until a primary input is reached. Once a primary input signal 
is encountered, it is made a leaf node and the recursion bottoms out. Special care must be 
taken when a circuit contains feedback loops in order to avoid infinite looping. Feedback 
loops occur when a logic block connects to a signal that connects to another logic block, 
which connects to another signal and so on until the original logic block is reached. A 
“loop detector” checks for cycles in the path trees and handles feedback loops in the 
circuit. It locates the beginning of the loop and returns one level in the recursion to the 
next signal outside the loop, thus linking the loop back to its starting logic block. After all 
paths from the primary output have been combined into a tree, the method moves on to 
the next primary output. Finally, after all primary outputs obtain their respective path 
tree, the trees are combined into an array and sent to the search process.  

The search process iterates through each path tree and creates a working list for 
each path in the tree. The working list, shown in Figure 7, contains the asset patterns that 
are to be compared with the Threat Library. As each working list is created, its assets are 
linearly compared with the patterns in the Library. Since the threat patterns in the Library 
allow for multiple assets to be contained within the same signal or logic block, a multi-
way comparison algorithm is used to determine matches.  



 
Figure 7: Path tree with a working list highlighted. 

If a full match is achieved, an attack data structure is created that contains the 
logic blocks, the asset pattern, and the library information of the malicious pattern. These 
attack structures are passed to the risk assessment method to be assigned a trustability 
rating. Due to overlapping of the path trees, a single malicious pattern may be matched 
multiple times along the same logic blocks and signals. Therefore, to avoid repetition, the 
attacks are consolidated into a list of unique attacks without repetition.  

D.2.7.3 Risk Assessment 
Risk assessment is the process by which trustability ratings are assigned to each 

attack. The trustability rating of an attack represents the likelihood that the attack is real 
as opposed to a false positive, and is formed by taking all known information about the 
circuit and threat pattern and combining them into an integer number.  

The formula for the trustability number calculation is a simple weighted average 
using the following variables. 

• Threat Pattern Reliability – This is a number that will be incorporated as part of 
the Library’s self-learning ability. Each malicious asset pattern in the Library 
contains a reliability number which represents the likelihood that the attack or 
located malicious asset pattern is real. When self-learning features are 
implemented in the Library, this number can be updated whenever its malicious 
pattern is used in an attack. If the attack was actual, the number will be increased, 
otherwise it will be decreased. Currently, the number represents only a best guess 
based on the specificity of the corresponding malicious asset pattern. 

• Circuit Application – When the circuit’s intended primary use has been selected, a 
set of three numbers, or “threat levels”, is passed along to risk analysis. Each 
number corresponds to the likelihood of each type of threat (Denial-of-Service, 
Data Tampering, and Information Leakage) occurring, given the circuit’s 
application. Each attack, upon creation, is assigned one of the three types of 
threats, and the Trustability Calculator matches the threat’s type with the 
appropriate number from the circuit’s application.  

• Third Party Trustability – Since Third Party vendors can have different degrees of 
trustworthiness (some are more trustable than others), each Third Party IP block is 
“weight”.  This weight is determined by the user and is the user’s best guess as to 
the likelihood that an IP vendor might have malicious intent. 

After each attack’s trustability number has been calculated, all the ratings are 



averaged to give the circuit an overall trustability rating. This rating provides a general 
estimate for the cause for concern in deploying the circuit into the intended application.  
Once the trustability rating has been calculated, it and all other attack information are 
sent to the display window.  

D.2.8 Results 
Upon completion of risk analysis, specific information about the overall circuit design 

is displayed to the user.  A screenshot of the displayed information is shown in Figure 8.  
 

 
Figure 8: The results after performing risk analysis 

 
There are five important components to the display window. 

• Threat Level Indicator - The Threat Level Indicator, located in the upper left 
portion of the display window, offers the overall circuit reliability to the user.  It 
informs the user whether the circuit is considered severe, moderate, or low in 
terms of threat possibility. It is based on the calculated threat level of the entire 
circuit, which is located directly below the indicator.  

• Overall Threat Level Number – The Overall Threat Level Number, located 
directly below the Threat Level Indicator on the left side of the display, is a 
numerical representation of the Indicator. It gives a rating to the overall circuit 
within a range from 1 to 10, with 10 representing the highest threat possibility. 

• List of Potential Attacks – Shown in the middle of the window is a prioritized 



list of potential attacks according to each attack’s trustability number, which was 
determined during risk analysis.  The user is able to select any potential attack 
from the list, and the details of the attack are shown in the “Attack Details” 
portion of the display located in the lower right corner of the window. 

• Application Details – In the upper right corner of the display window is 
information about the application that was selected for the IC. It displays the 
name of the selected application as well as the threat levels corresponding to the 
application. 

• Selected Attack Details – Once an attack has been selected from the list of 
potential attacks, details about the attack are displayed in the bottom right corner 
of the display window. The information displayed includes the following:  

o Type – the type of threat that the attack corresponds to.  This takes on one 
of three possible values: “DOS” (Denial-of-Service), “DT” (Data 
Tampering), or “IL” (Information Leakage). 

o Entity – the VHDL file the attack occurs in. 

o Trustability Number – an integer value, ranging from 1 to 100, 
representing the likelihood that the attack is real as opposed to a false 
positive. 

o Reliability Number – intended to be a statistical value of the accuracy of 
the particular attack over time. Due to the nature of this number, it 
becomes more effective with increasing use of the Tool.  It is aimed to 
answer the question “How many times has this asset pattern been an actual 
attack in past circuit designs?” 

o 3rd Party IP Block Involved – the Third Party IP block involved in the 
attack.  Given the organization of the display window, this is always a 
logic block found inside the VHDL file that the attack occurs in (i.e., the 
VHDL file corresponding to the Entity entry in the display window). 

o Affected Elements – the components of the VHDL file that are involved in 
the attack.  These are the components which contained the asset pattern in 
the Threat Library that was matched when performing risk analysis. 

o Asset Pattern – the pattern in the Threat Library that was matched when 
performing risk analysis 

D.2.9 Limitations 
At present, the TRUTH Analysis Tool has a limited range of VHDL syntax that it 

can accurately support when creating the circuit structure S. Modifications are being 
made in order to expand this range, however, the key obstacles reside in the VHDL 
parser.  Since the circuit structure S provides a foundation for the entire TRUTH Analysis 
Tool (the Tool is only as effective as what the accuracy of the circuit structure S allows), 
modifications have primarily focused on improving the flexibility of the parser.  
Currently, the parser has the following limitations when parsing a VHDL file: 

• Case Sensitive – the parser is case sensitive. This means each component needs to 
have the same name, down to the case of each letter of the name, throughout the 



entire VHDL file. For example, suppose a signal was declared with the name 
being "sig_a". Therefore, throughout the entire VHDL file, the signal needs to be 
addressed as "sig_a" (not "Sig_a", "SIG_A", etc.). The parser considers "sig_a" 
and "sig_A" to be two different signals, and will handle them as such, causing the 
Tool to generate an error.  

• Constant Declarations – the parser does not recognize constant declarations. Any 
constants that are declared are ignored by the parser. 

• Constants in Component Instantiations (i.e., Port Map statements) – each 
component instantiation cannot contain constants. The term "constant", in this 
context, refers to any value that is not declared as a signal and that never changes 
value. Two common types of examples include '1' and "0000". Any constants 
included in component instantiations will cause an inaccurate circuit structure S to 
be created and will generate an error when performing risk analysis.  

• Function Declarations – the parser does not recognize function declarations. 
These declarations will not cause the Tool to generate an error but rather are 
completely ignored by the parser. 

• Generate Statements – any generate statements found in a VHDL file are ignored 
by the parser.  These statements will not cause the Tool to generate an error but 
are simply not recognized by the parser. 

• Generic Statements – the parser does not recognize generic statements. Any 
generic statements are ignored by the parser which, in turn, will cause an 
inaccurate circuit structure S to be created.  For example, if the statement 
“GENERIC (N: INTEGER := 16);” was found in a VHDL file, the parser would 
not recognize the meaning behind it.  Therefore, whenever ‘N’ was addressed 
throughout the file, the parser would only associate it as being a character as 
opposed to being an INTEGER of size 16. 

D.2.10 Testing 
Throughout the development of the TRUTH Analysis Tool, several different 

circuit designs were used for testing and experimentation purposes.  At first, since the 
initial task was to develop the circuit structure S, only one design was used for testing.  
This design, which was a simple RISC microprocessor, was used in verifying that the 
development of the circuit structure S accurately represented its VHDL counterpart.  
Once this phase was close to completion, several other designs were introduced to the 
Tool.  These included a keyboard controller as well as a 64-bit block cipher, among 
others.  However, even though these designs were used at different times throughout the 
development stages, the RISC microprocessor served as the primary test case throughout 
the project’s entirety. 

When the Tool’s development neared completion, two examples were developed 
to demonstrate the Tool’s functionality.  Both examples extended the RISC 
microprocessor design.  One successfully performed a Denial-of-Service attack while the 
other a Data Tampering attack.  Upon demonstration, the Tool successfully located both 
attacks. 
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